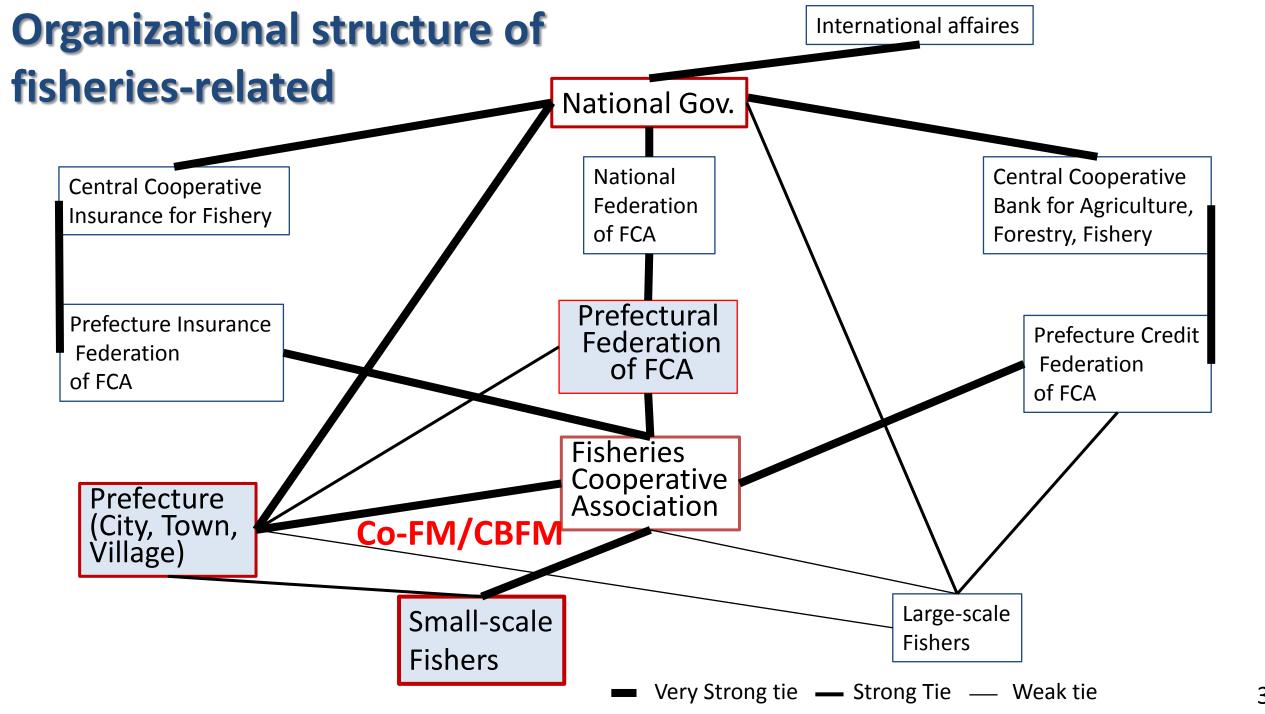
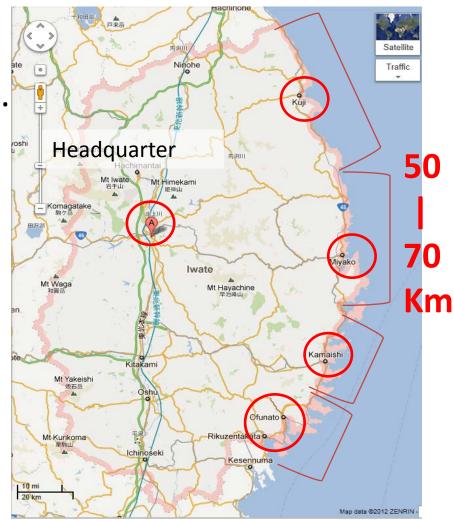
22-24 October 2019 The Majestic hotel Sakon Nakhon Province, Thailand

Establishment of committee for Community Based Fisheries Management (CBFM) and gathering fisheries information through the committee: under so many fishers and fishing villages, low No. of officers and budget


Japan Fisheries Research and Education Agency National Research Institute of Fisheries Science

Tsutom Miyata

Process of Community Based Fisheries Management(CBFM) in the Northern part of Japan, Iwate Prefecture=local government



Decision-making for guideline of FM

- Establishment of 4 committees
 And establishment of headquarters committee.
- The members of the committee are the

 (1)representatives for each fishing village,
 (2)managers of each fisheries cooperative association, (3)a manager of wholesale market of fishing port, (4)prefecural officers and researchers.
- 3. The member of the headquarters is the representatives in each local committee.

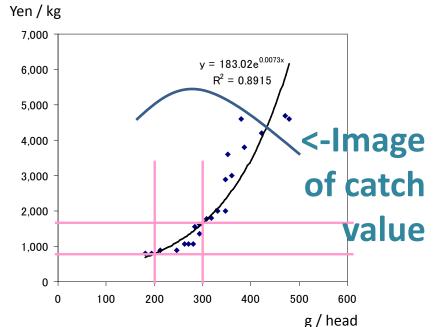
Cont'd

- 4. The each local committee is convened 3 or 4 times per year. The headquarters committee is convened once per year. The committees keep being convened for a fish for several year.
- 5. At first year, target species is one, next is two....5years later is 5...the guide line of first target sp. FM will be decided after 5 years. The first guideline will be needed a revision after 5 years. It is continuous.
- 6. Main themes of the committees are results of a resource and an economic survey, an actual condition of fisheries, a trend of fish market, an information of each other's committee.

Major themes of committee are for "improving a fishing

household income" based on a sustainable fish resource.

- Ex.1; Resources assessment results of target species
- Ex.2; Restriction of the mesh size of a net or a pod and operating period for a young fish
- Ex.3; Restriction of selling size for best price and operation period for high price
- Ex.4; How to develop new fish channel for high price and fish promotion strategy/tactics


Why is price/distribution analysis so importance?

At a wholesale market near a fishing port

At a wholesale market in urban area

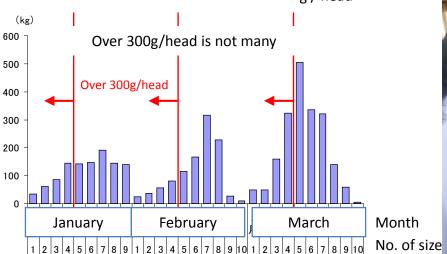
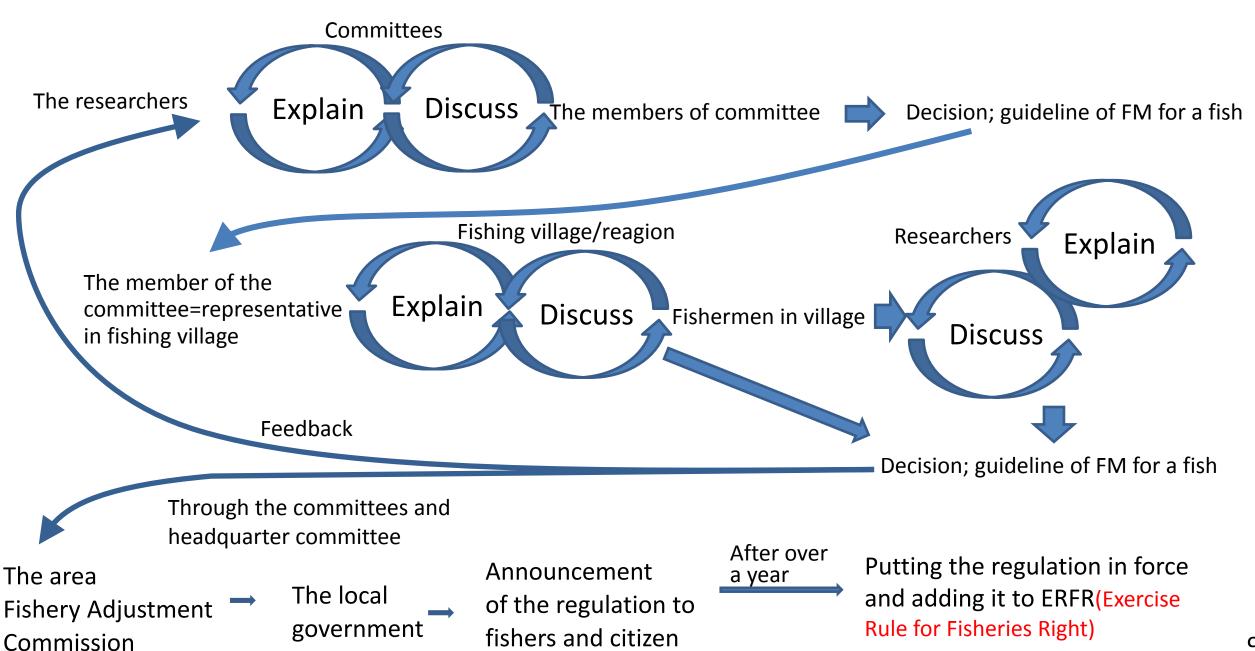


図8 釜石魚市場における月別・銘柄別上場量および価格動向 資料:2006年釜石魚市場原票より作成

Officers should focus on PROFIT of fishing household under sustainable resources utilization


If government usually suggests restriction of catch to fishers, nobody hear the suggestion. However, if government suggests how to improve a fishing household income based on a sustainable fish resource, every fishers accept it with applause!

It is not easy, but it is core of CoFM

- ◆ Profit= Value of catch Operation cost
- ◆ Value of catch = Fish Price × Catch
- ◆ Price = Size × Quality × Season × Market place/Distribution × Quantity in market
- igoplus Operation cost =total cost \div operation= $\beta \times$ CPUE (total Catch \div operation)
- ➤ To find out "Big size × Required quality × No-spawning season × Good channel × Reduced catch " is better than "Now "

Process of making CBFM

Regional Committee

Commissioners of middlemen, commissioners of fisher=representative of fishing village/region

 Explanation and discussion among fishers and researchers

ERFR(Exercise Rule for Fisheries Right)

- 1. Qualification: Only member excluding associate member
- 2. Delegation of fishing: Prohibition excepting disease
- 3. and 4. are written down "Exercise Rule for Fisheries Right (ERFR) Committee"
- 5. Allowable Fishery Method: Limit of no. of fishing gear; under 150 gillnets (from 1st Jan. to 15th Oct. and from 20th Dec. to 28th Dec.).....etc.

 Input control
- 6. Protected Area: Benten cape and Okido cape....etc.
- 7. When EFR Committee decide to set new ERFR, the Committee should consider about fishing household economy.

- 8. Limited catch size: under 30 cm Japanese flounder and 20 cm marbled sole
 - Limited boat size: under 10 tons for gill-net Input control
 - FCA must inspection the fishing ground as needed
- 9. Restricted and prohibited fishing gear: under 7.5cm mesh size gillnet. Under 12.1cm mesh size when the target fish is Japanese flounder.....etc.
- 10. Members should pay fee for administration of EFR
- 11. Administrative director of FCA is stopped fishing of violator and carry a penalty<-Rare case because of mutual monitoring Administration
- 12. FCA should hear committee's comments in charge of a fishing grand when ERFR is revised by FCA administrative board

Case of MCS network in Iwate Pref.

MCS for a illegal fishing

- Fisheries patrol boat; 2 local governmental ships
 ; over 10 FCA boats
- Surveillance fishermen; 251 people
 Cf. 5,000 households
- Monitoring by ordinary fishermen themselves
- Monitoring in wholesale market

Why do the fishers follow the FRER?

- FRER is criteria which local government allow, but the rules were decided by themselves after many discussions among fishers.
- That's way, they conduct mutual monitoring on violating rules.
- Many fishers live in the fishing village for long term and will live in the village in future. It is very important to maintain harmonization among people in the village. Therefore, it is difficult to violate the rules, it means OSTRACISIM.
- Many fishers in Southeast Asia can move to another village easily.....Key word is fish distribution sector.

Promotion goods

のお金融は温に帰してください

●漁業者、遊漁者(釣り人)の皆さんへ

Local rules, not local government rules

宮古湾周辺魚類栽培漁業協議会

宮古地方振興局水産部・(独)水産総合研究センター・宮古市・田老町・重茂漁業協同組合・宮古漁業協同組合・田老町漁業協同組合

Actual situation regarding CoFM/CBFM in JAPAN

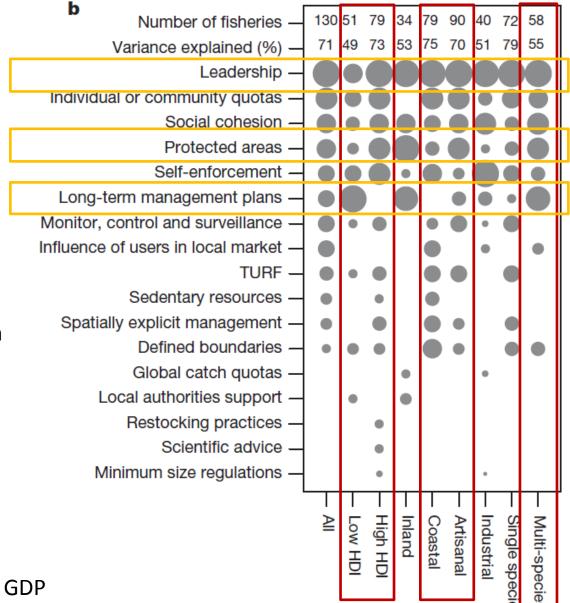
Unit: Number

	2003	2008	2013
No. of FCA etc. conducting CoFM/CBFM	1, 533	1, 738	1, 825

Target species

Unit:Number of FCA

	2003	2008	2013
Abalone	510	594	614
Turban shell	355	439	457
Sea urchin	370	428	433
Sea cucumber	117	324	410
Japanese flounder	188	318	365
Sea bream	142	214	240
Octopus	106	210	302
Flounder	166	207	250


Statistics: Fisheries census

Regarding data for CBFM

Leadership, social capital and incentives promote successful fisheries

Not only catch and CPUE, but also social survey are important, but cutting explanation of it

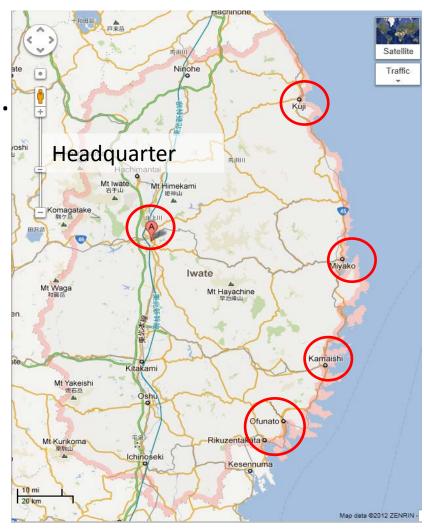
Refer to: Miyata2018, Methodology
for Small-scale Fishing Household ←Google search
Surveys Collecting Quantitative Data,
Journal of International Cooperation for
Agricultural Development

Incentives; TURF, IQ, ITQ...

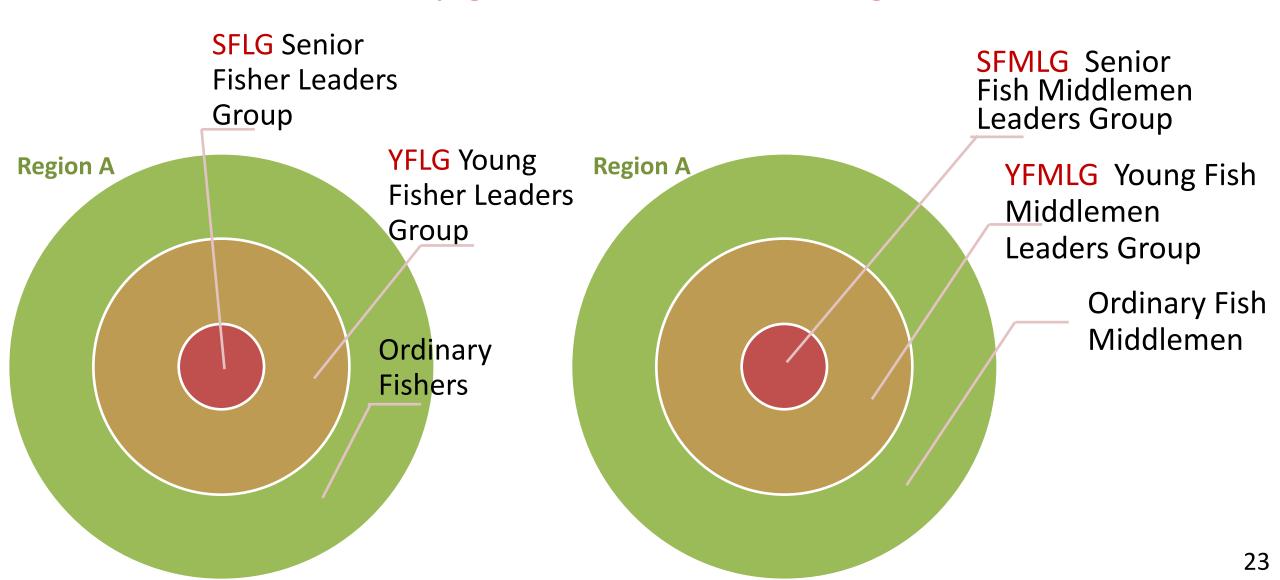
HDI: Human Development Index; length of life, Education, GDP

How to collect data? Who collects catch/fishing effort and price data?

Who are key informants?


- ➤ A leader of fishers in a village

 He/she will be the CBFM commissioner and key informant because of interesting sustainable fisheries
- ➤ Middlemen

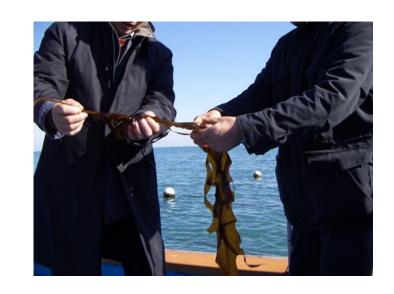

They want to continue their business, therefore they will be involved the CBFM committee and key informant. And major distributors/middlemen are not many, it is easy to identify the key informants

Repeat Decision-making for guideline of FM

- Establishment of 4 committees
 And establishment of headquarters committee.
- 2. The member of the committee is the (1)representatives for each fishing village, (2)managers of each fisheries cooperative association, (3)a manager of wholesale market of fishing port, (4)local governmental officers and researchers.
- 3. The member of the headquarters is the representatives in each local committee.

Fisher and Middlemen Leaders Group: Authorized by government or local government

What are incentives for leader?


- Honor from government
- Prefectural level information
- National level information
- Visiting abroad to learn new technology, etc.
- Discussion with fishers in other region

Catch and CPUE data from leaders of fishers

And estimated data from them

If don't this, the leader is excluded the leader group by local gov.

FEO supporting the leaders: CoFM

Fisher

Researcher

Supporting and Connecting

Supporting and Connecting

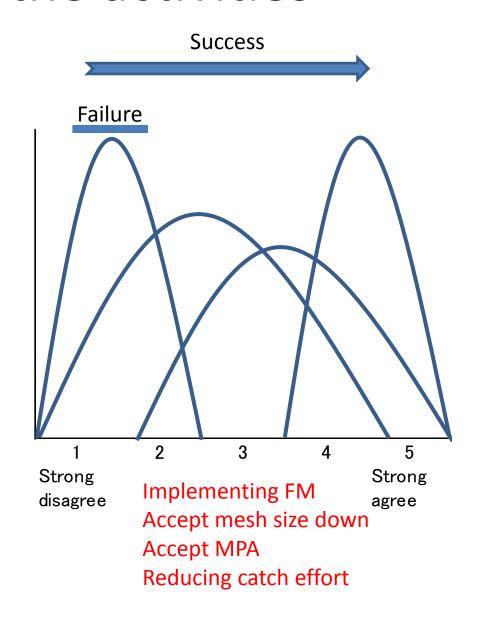
Fisheries Cooperative Association

Officer

Key words

- Autonomic CoFM activities supported by government =low No.
 of officers and budget
- CBFM committee
- Maintaining profit of fishers under FM restriction
- Fisher Leaders Group and Fish Middlemen Leaders Group
- Budget for the committee and FLGs and FMLGs
- Incentive for group leaders
- Fisheries Extension Officer
- Promotion of CBFM

How to evaluate the activities


Using easy questionnaire for revising activities

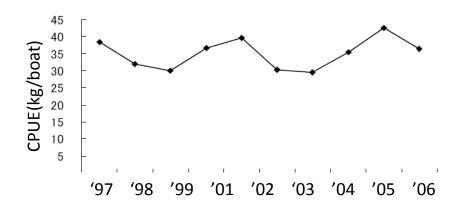
- Likert scale(1,2,3,4,5)
- (Normal) Distribution(t-test)
- AHP(Analytic Hierarchy Process)
- Mixed approach AHP × L.S. × N.D

•

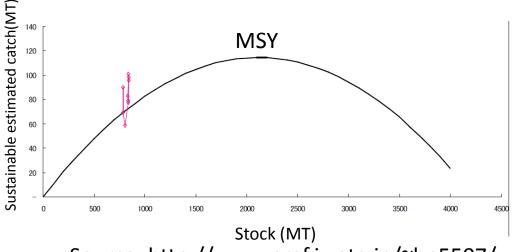
•

It is tentative idea!

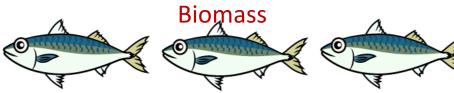
Thank you for your attention



Resource survey by Local Governmental Fisheries Experiment Station


At a wholesale market near a fishing port

Using survey ship

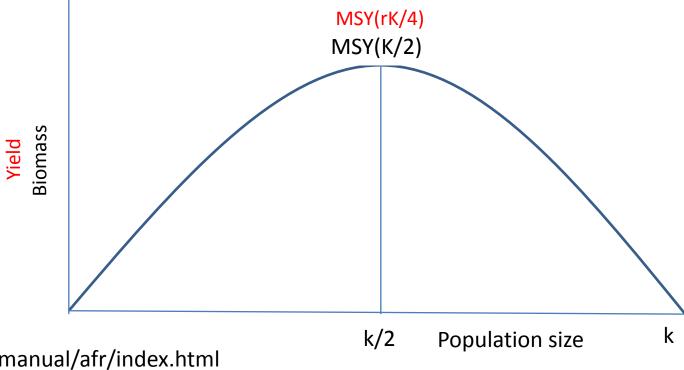

Source; http://www.pref.iwate.jp/~hp5507/

Production model for estimating MSY, Bmsy, Xmsy

Almost all stock assessments are estimated by **VPAs(Virtual** Population Analysis) in Japan. This is easy production model-> But can estimate **MSY**

catch	оре	eration days					CPUE _{t+1} = (1+r)CPUE	$E_t - (r/qK)CPUE_t^2 - qX$	tCPUE _t
	Yt	Xt	CPUEt	CPUEt	CPUEt ²	XtCPUEt	Bt=CPUEt/q		
1934	60,913	5,879	10.361	10.361	107.353	60,913	846,441		
1935	72.294	6,295	11.484	11.484	131.890	72.294			
1936	78,353	6,771	11.572	11.572	133.908	78,353	,		
1937	91,552	8,223	11.134	11.134	123.958	91,552			1
1938	78,288	6,830	11.462	11.462	131.386	78,288			
1939	110,418	10,488	10.528	10.528	110.839	110,418	860,077		r,
1940	114,590	10,801	10.609	10.609	112.555	114,590	866,708		
1941	76,841	9,584	8.018	8.018	64.282	76,841	654,993		
1942	41,965	5,961	7.040	7.040	49.561	41,965	575,120		
1943	50,058	5,930	8.441	8.441	71.259	50,058	689,619		
1944	64,869	6,475	10.018	10.018	100.368	64,869	818,441		
1945	89,194	9,377	9.512	9.512	90.478	89,194	777,073		
1946	127,701	13,958	9.149	9.149	83.703	127,701	747,414		
1947	160,151	20,383	7.857	7.857	61.734	160,151	641,877		
1948	206,993	24,781	8.353	8.353	69.771	206,993	682,381	概要	
1949	200,070	24,923	8.028	8.028	64.441	200,070	655,801		
1950	224,810	31,856	7.057	7.057	49.802	224,810	576,520	回帰	統計
1951	186,015	18,403	10.108	10.108	102.169	186,015	825,752	R	0.9822
1952	195,227	34,834	5.604	5.604	31.410	195,227	457,854	R2	0.9647
1953	140,042	36,356	3.852	3.852	14.838	140,042	314,682	Ajd R2	0.9290
1954	140,033	26,288	5.327	5.327	28.376	140,033	435,174	S.E.	1.5332
1955	140,865	17,198	8.191	8.191	67.089	140,865	669,137	Ovs. No.	
1956	117,026	27,205	4.302	4.302	18.504	117,026	351,418		
1957	163,020	26,769	6.090	6.090	37.087	163,020	497,507		
1958	148,450	31,135	4.768	4.768	22.733	148,450	389,513		
1959	140,484	28,198	4.982	4.982	24.821	140,484	407,004		
1960	244,331	35,841	6.817	6.817	46.473	244,331	556,915		
1961	230,886	41,646	5.544	5.544	30.736	230,886	452,913		
1962	174,063	42,248	4.120	4.120	16.975	174,063	336,582		
1963	145,469	33,303	4.368	4.368	19.080	145,469	356,843		coef
1964	203,882	42,090	4.844	4.844	23.464	203,882	395,722	Constant	
1965	180,086	43,228	4.166	4.166	17.355	180,086	340,334	CPUEt	1.811
1966	182,294	40,393	4.513	4.513	20.367	182,294	368,686	CPUEt ²	-0.073
1967	178,944	33,814	5.292	5.292	28.005	178,944	432,325	XtCPUEt	-0.000

			重重	回帰
	1 + r =	1.8115974	r=	0.81
	r/qK =	-0.0730718	К	907
	q=	-0.0000122	q=	0.00
		N	//SY=rK/4=	18
			Bmsy=K/2= Kmsy=r/2q	4:
概要				
	帚統計			
R	0.98220618			
R2	0.96472898			
Ajd R2	0.92904425			
S.E. Ovs. No.	1.53320437 33			
075.140.	35			
	coef	S.E.	t	P−値
Constant	0	#N/A	#N/A	#N/A
CPUEt	1.8115974	0.3370580	5.3747353	0.00
CPUEt ²	-0.0730718	0.0283618	-2.5764174	0.01
O. OLU				


Stock assessment

1. Cohort analysis = VPA(Virtual Population Analysis); utilization of No. of fish by each age

2. CPUE analysis: Upper 25% in average CPUE is good, lower 25%

in average CPUE is bad

Production modelMy recommendation

VPA(Virtual Population Analysis)

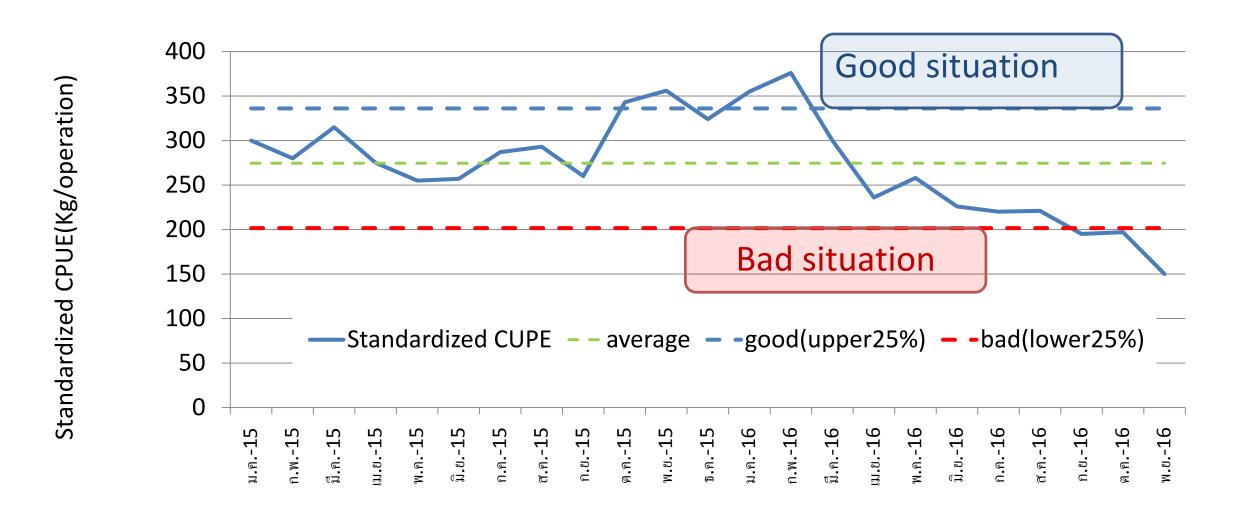
Catch Data

age	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
0	40	40	53	53	67	67	83	83	67	45
1	50	50	60	65	75	81	92	99	75	56
2	60	58	69	67	84	82	100	98	81	59
3	58	60	68	65	72	75	82	85	67	55
4	33	31	37	34	36	32	37	34	29	24
5	13	13	15	14	14	12	12	11	8	8
6	7	5	6	5	6	5	4	4	3	2

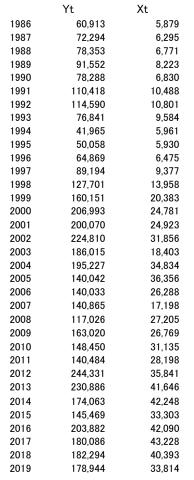
age	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000
0	1,016	1,024	1,105	1,081	1,144	1,029	928	729	581	423
1	660	648	654	697	681	712	635	554	421	334
2	413	402	393	389	414	395	411	350	290	220
3	215	228	222	207	206	209	198	194	155	128
4	99	96	104	93	86	79	79	65	60	49
5	38	39	39	39	34	28	27	22	16	17
6	21	15	16	14	15	12	9	8	6	4

$$N_{a,y} = N_{a+1,y+1} e^{M} + C_{a,y} e^{M/2}$$

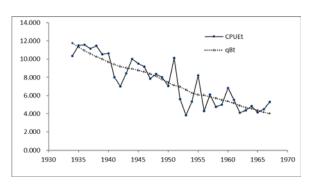
$$N_{a,y} = C_{a,y}e^{M/2} / (1 - e^{-Fa,y}).....latest year$$


$$F_{a,y} = In(N_{a,y}/N_{a+1,y+1}) - M$$

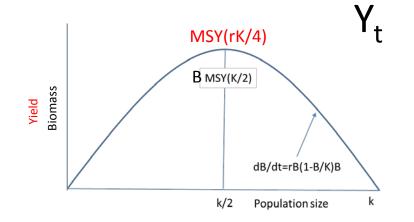
N: fishery stock (number), a: age, y: year, C: catch,


e: natural logarithm, M: natural mortality rate,

F: fishing rate


Understanding actual resources from CPUE trend

Production model, recommendation



$$qB_{t+1} = qB_t + qrB_t (1 - B_t/K) - q2X_tB_t$$

 $qB_t = (estimated)CPUE_t$

$$CPUE_{t+1} = (1 + r)CPUE_t - (r/qK)CPUE_t^2 - qX_tCPUE_t$$

MSY=rK/4 Bmsy=K/2=r/((r/qK) × q)/2 Xmsy=r/2q

Y=Catch amount X=Catch Effort q=fishing gear efficiency (consideration for parameter of area + season)

Bt=The population size at time t K=The carrying capacity of the population r=intrinsic/natural rate of population increase

Price model

Price = Size × Quality × Season(dummy V) × Market place (dummy V) × Quantity

If you find how to sell the target fish with higher price, the fishers can earn same money when their catches reduce for FM!

This is important tool for implementing CBFM, it's my experience!

The target fish species in Iwate prefecture

20cm under catch prohibited

7cm under catch prohibited and female catch prohibited

1. Japanese flounder,

2. Marbled flounder,

3. Fat greenling,

4. Horsehair crab,

30cm under catch prohibited

25cm under catch prohibited

5. North Pacific Giant Octopus.

1kg under catch prohibited in Northern part of Iwate pref. and 2kg under catch prohibited in Southern part of Iwate

National certificate of FEO

FEOs have a license to extend new technique and knowledge for fishers. <- Need to work at government and FCA for 2-10 years

No.345 第345号

TEST CERTIFICATE

合格証書

Tsutomu Miyata 宮田 勉 The day of birth; 8 Jury 1969 昭和44年7月8日生

平成18年度水産業普及指導員資格試験に合格したことを証する。

I certificate the pass of examination of a fisheries extension officer in 2006 fiscal year

平成19年1月4日 4 January 2007

農林水産大臣 松岡利服

Minister of Agriculture, Forestry and Fisheries
Toshikatsu Matsuoka